Context adaptation in fuzzy processing and genetic algorithms
نویسندگان
چکیده
In this paper we introduce the use of contextual transformation functions to adjust membership functions in fuzzy systems. We address both linear and nonlinear functions to perform linear or nonlinear context adaptation, respectively. The key issue is to encode knowledge in a standard frame of reference, and have its meaning tuned to the situation by means of an adequate transformation reflecting the influence of context in the interpretation of a concept. Linear context adaptation is simple and fast. Nonlinear context adaptation is more computationally expensive, but due to its nonlinear characteristic, different parts of base membership functions can be stretched or expanded to best fit the desired format. Here we use a genetic algorithm to find a nonlinear transformation function, given the base membership functions and a set of data extracted from environment classified by means of fuzzy concepts.
منابع مشابه
Fuzzy Multi-objective Permutation Flow Shop Scheduling Problem with Fuzzy Processing Times under Learning and Aging Effects
In industries machine maintenance is used in order to avoid untimely machine fails as well as to improve production effectiveness. This research regards a permutation flow shop scheduling problem with aging and learning effects considering maintenance process. In this study, it is assumed that each machine may be subject to at most one maintenance activity during the planning horizon. The objec...
متن کاملPothole Detection by Soft Computing
Subject- Potholes on roads are regarded as serious problems in the transportation domain and ignoring them leads to the increase of accidents, traffic, vehicle fuel consumption and waste of time and energy. As a result, pothole detection has attracted researchers’ attention and different methods have been presented for it up to now. Background- The major part of previous research is based on i...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملNonlinear Context Adaptation with a Genetic Algorithm
In this paper we elaborate on the use of nonlinear functions in the adjustment of membership functions in fuzzy processing. Using such a nonlinear scheme, called nonlinear context adaptation, the knowledge can be encoded in a standard frame of reference, and have its meaning tuned to the situation by means of a nonlinear transformation. Due to its nonlinear characteristic, different parts of ba...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Intell. Syst.
دوره 13 شماره
صفحات -
تاریخ انتشار 1998